In Situ Synthesis of Fluorescent Carbon Dots/Polyelectrolyte Nanocomposite Microcapsules with Reduced Permeability and Ultrasound Sensitivity.
نویسندگان
چکیده
Designing and fabricating multifunctional nanocomposite microcapsules are considerable interests in both academic and industrial research aspects. This work first reports an innovative approach to in situ synthesize and assemble fluorescent carbon dots (CDs) into polyelectrolyte microcapsules, obtaining highly biocompatible nanocomposite microcapsules with excellent luminescence that facilitate imaging and identification in vitro, yet with the feasibility to load small molecules and ultrasound responsiveness to trigger their release. CDs are produced in situ in (PAH/PSS)4 microcapsule shells by carbonization of dextran molecules under relatively mild hydrothermal treatment. Compared with the collapsed and film-like (PAH/PSS)4 microcapsules, the novel composite microcapsules show a free-standing structure, smaller size, and thicker shell. CDs are proven to be fabricated and embedded in PAH/PSS multilayers, and the formed PAH/PSS/CD microcapsules are endowed with strong luminescence, as verified by the transmission electron microscopy, fluorescence spectra, and confocal laser scanning microscopy results. The in situ formation of CDs in capsule shells also empowers these capsules with ultrasound responsiveness and reduced permeability. The feasibility of encapsulation of small molecules (rhodamine B) and ultrasound-triggered release is also shown. Most importantly, due to the intrinsic biocompatible property and photostability of CDs, these fluorescent PAH/PSS/CD microcapsules show negligible cell toxicity and low photobleaching, which are impossible for capsules composited with conventional organic dyes and semiconductor quantum dots.
منابع مشابه
A study of Laser Irradiation Influence on the Stable of Polyelectrolyte Micro- and Nanocapsules
Laser radiation was used for permeability increase up to destroy of polyelectrolyte capsules. Silver and gold nanoparticles was synthesized and incorporated into capsule shells to attain the sensitivity of microcapsules to laser radiation. Lasers of different power and wavelength were used. The sensitivity of nanocomposite shell to laser radiation can be controlled by nanoparticles concentratio...
متن کاملPreparation and Characterization of Multiwalled Carbon Nanotubes-Polythiophene Nanocomposites and its Gas Sensitivity Study at Room Temperature
The nanocomposites of polythiophene and carboxylated multiwalled carbon nanotubes (MWCNTs) were synthesized by in-situ chemical oxidative polymerization method using anhydrous ferric chloride (FeCl3) as an oxidant. The MWCNTs functionalized and ultrasonicated to obtain uniform dispersion within the polythiophene matrix. Field emission scanning electron microscopy was used to characterize the mo...
متن کاملNext-Generation Theranostic Agents Based on Polyelectrolyte Microcapsules Encoded with Semiconductor Nanocrystals: Development and Functional Characterization
Fabrication of polyelectrolyte microcapsules and their use as carriers of drugs, fluorescent labels, and metal nanoparticles is a promising approach to designing theranostic agents. Semiconductor quantum dots (QDs) are characterized by extremely high brightness and photostability that make them attractive fluorescent labels for visualization of intracellular penetration and delivery of such mic...
متن کاملSynthesis of CdTe quantum dots coated with biocompatible materials and investigation of their identification Properties
Fingerprint identification or dactyloscopy is a method for human identification. The impressions left by a human finger on surfaces are not visible to naked eyes (latent fingerprint); therefore, they require revelation to become visible and identified. Within the last century, several fingerprint revelation techniques such as optical, physical, and chemical were studied. These traditional metho...
متن کاملSynthesis and Optical Study of CdZnTe Quantum Dots
The comparison of growth processes and fluorescent properties of CdZnTe semiconductor quantum dots that are synthesized in different concentrations of Zn2+ in water are discussed in this paper. The samples are characterized through absorbtion (UV) and photoluminescence spectra (PL). The results show that when the reaction time is prolonged, the absorption peak and fluorescent emission peak pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره شماره
صفحات -
تاریخ انتشار 2016